Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 582

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on the difference between B$$_{4}$$C powder and B$$_{4}$$C pellet regarding the eutectic reaction with stainless steel

Hong, Z.*; Ahmed, Z.*; Pellegrini, M.*; Yamano, Hidemasa; Erkan, N.*; Sharma, A. K.*; Okamoto, Koji*

Progress in Nuclear Energy, 171, p.105160_1 - 105160_13, 2024/06

In this study, it is found that the eutectic reaction between B$$_{4}$$C powder and stainless steel (SS) is considerably more rapid than that between the B$$_{4}$$C pellet and SS. The derived reaction rate constant values for powder and pellet cases are consistently based on the reference values. Also, a composition analysis using SEM/EDS was conducted for the detailed microstructures of the powder and pellet samples. In the powder case, only one thick layer is found as the reaction layer consisting of (Fe, Cr)B precipitate, including B$$_{4}$$C powder. In the pellet case, two layers are found in the reaction layer.

Journal Articles

Evaluation of temporal changes in fracture transmissivity in an excavation damaged zone after backfilling a gallery excavated in mudstone

Aoyagi, Kazuhei; Ishii, Eiichi

Environmental Earth Sciences, 83(3), p.98_1 - 98_15, 2024/02

 Times Cited Count:0 Percentile:0.04(Environmental Sciences)

The long-term geological disposal of high-level radioactive waste relies on predictions of future changes in a disposal facility's hydro-mechanical characteristics to assess potential leakage through fractures in the excavation damaged zone (EDZ) after backfilling the facility. This study evaluated the transmissivity of EDZ fractures using in situ hydraulic tests around the area of a full-scale, experimental, engineered barrier system in the Horonobe Underground Research Laboratory, Hokkaido, Japan. After their installation, the buffer blocks swelled, altering the stresses within the EDZ fractures. The effects of these changing stresses on the fractures' transmissivity were assessed over a period of 4 years. The transmissivity continuously decreased in this period to about 41% of its value measured prior to the swelling. Using the Barton-Bandis normal-stress-dependent fracture-closure model, the decrease in transmissivity is quantitatively attributed to closure of the EDZ fractures, which was caused by the swelling pressure increasing up to 0.88 MPa. Evidence of fracture closure came from seismic tomography surveying, which revealed a slight increase in seismic velocity in the study area with increasing swelling pressure. The results show that EDZ fractures were closed by swelling of the full-scale buffer material. They also demonstrate the applicability of the Barton-Bandis model to preliminary estimation of the long-term transmissivity of EDZ fractures in facilities for the geological disposal of radioactive waste.

Journal Articles

Latent ion tracks were finally observed in diamond

Amekura, Hiroshi*; Chettah, A.*; Narumi, Kazumasa*; Chiba, Atsuya*; Hirano, Yoshimi*; Yamada, Keisuke*; Yamamoto, Shunya*; Leino, A. A.*; Djurabekova, F.*; Nordlund, K.*; et al.

Nature Communications (Internet), 15, p.1786_1 - 1786_10, 2024/02

Injecting high-energy heavy ions in the electronic stopping regime into solids can create cylindrical damage zones called latent ion tracks. Although these tracks form in many materials, none have ever been observed in diamond, even when irradiated with high-energy GeV uranium ions. Here we report the first observation of ion track formation in diamond irradiated with 2-9 MeV C$$_{60}$$ fullerene ions. Depending on the ion energy, the mean track length (diameter) changed from 17 (3.2) nm to 52 (7.1) nm. High resolution scanning transmission electron microscopy (HR-STEM) indicated the amorphization in the tracks, in which $$pi$$-bonding signal from graphite was detected by the electron energy loss spectroscopy (EELS).

Journal Articles

Visualization experiments of radiation heating on the eutectic reaction between B$$_{4}$$C-SS and its relocation behavior

Ahmed, Z.*; Sharma, A. K.*; Pellegrini, M.*; Yamano, Hidemasa; Okamoto, Koji*

Proceedings of Saudi International Conference On Nuclear Power Engineering (SCOPE2023) (Internet), 8 Pages, 2023/11

In this study, the eutectic behavior and subsequent melt structure of boron migration are observed by a quantitative and high-resolution visualization method using radiative heating. Experiments were conducted using B4C pellet and powder within SS tubes, replicating the actual control rod design in the temperature range of 1150$$^{circ}$$C to 1372$$^{circ}$$C to study long-duration melting and relocation behavior. The visualization technique accurately identified the time of eutectic melting onset and the related temperature, pointing out different values for the pellet and the powder cases.

Journal Articles

Meso-timescale atomistic simulations on coalescence process of He bubbles in Fe by SEAKMC method

Yamamoto, Yojiro*; Hayakawa, Sho*; Okita, Taira*; Itakura, Mitsuhiro

Computational Materials Science, 229, p.112389_1 - 112389_9, 2023/10

 Times Cited Count:1 Percentile:52.07(Materials Science, Multidisciplinary)

He bubbles are characteristic microstructures under fusion reactor conditions. They approach and coalesce through their own migration, which significantly impacts the microstructure and material properties. However, these processes, which involve multiple migrations of metal atoms, cannot be treated by molecular dynamics (MD) due to its timescale limitation. In this study, self-evolving atomistic kinetic Monte Carlo (SEAKMC) was used to expand the timescale and reproduce bubble coalescences in Fe. To enhance selections of events that led to the process by avoiding trivial events with an extremely low activation energy such as tiny vibrations of a He atom or short-range displacements of the Fe atom, we introduced two algorithms into SEAKMC, a two-step saddle point search for the former measure and setting a threshold for a displacement distance of the Fe atom for the latter. Furthermore, by adding another algorithm to set an upper bound for the activation energy to prevent selections of events with an impractically high activation energy, we succeeded to reproduce the change in the configuration from dumbbell to elliptical up to a simulated time of $$10^{-1}$$ s, 8 orders longer than MD timescales. The developed method is effective for analyzing microstructures of metallic materials containing light elements and is the only method that can reach timescales comparable to those of experiments.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors; Project overview and progress until JFY2022

Yamano, Hidemasa; Takai, Toshihide; Emura, Yuki; Fukuyama, Hiroyuki*; Nishi, Tsuyoshi*; Morita, Koji*; Nakamura, Kinya*; Pellegrini, M.*

Nihon Kikai Gakkai 2023-Nendo Nenji Taikai Koen Rombunshu (Internet), 5 Pages, 2023/09

A research project has been conducting thermophysical property measurement of a eutectic melt, eutectic melting reaction and relocation experiments, eutectic reaction mechanism investigation, and physical model development on the eutectic melting reaction for reactor application analysis in order to simulate the eutectic melting reaction and relocation behavior of boron carbide as a control rod material and stainless steel during a core disruptive accident in an advanced sodium-cooled fast reactor designed in Japan. This paper describes the project overview and progress until JFY2022.

Journal Articles

Development of experimental core configurations to clarify k$$_{eff}$$ variations by nonuniform core configurations

Gunji, Satoshi; Araki, Shohei; Suyama, Kenya

Nuclear Science and Engineering, 197(8), p.2017 - 2029, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The fuel debris generated by the accident at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant is expected to have not only heterogeneous but also nonuniform compositions. Similarly, damaged fuel assemblies remaining in the reactor vessels also have nonuniform configurations due to some missing fuel rods. This non-uniformity may cause changing neutron multiplication factors. The effect of non-uniformity on the neutron multiplication factor is clarified by computations, and the possibility of experimentally validating the computations used for criticality management is being investigated. For this purpose, in this study the criticality effects of several core configurations of a new critical assembly, STACY, of the Japan Atomic Energy Agency with nonuniform arrangements of uranium oxide fuel rods, concrete rods, and stainless-steel rods were studied to confirm benchmarking potential. The difference in these arrangements changed the neutron multiplication factor by more than 1 $. We confirmed that changes in local neutron moderation conditions and the clustering of specific components caused this effect. In addition, the feasibility of benchmark experimental cores with nonuniform arrangements is evaluated. If benchmarking of such experiments could be realized, it would help to validate calculation codes and to develop criticality management methods by machine learning.

Journal Articles

Preliminary analysis of severe accident in sodium-cooled fast reactor using eutectic reaction model of boron-carbide control-rod material

Yamano, Hidemasa; Morita, Koji*

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.4295 - 4308, 2023/08

This study applied the SIMMER-IV code with the newly developed model to a preliminary SA analysis of the SFR. The analysis results show that the eutectic reaction is caused by the contact between the liquid SS and the broken B$$_{4}$$C pellets which are released to the coolant channel after the failure of cladding which is melted by the mixture of liquid SS and fuel particles coming from the neighboring fuel assemblies. The liquid eutectic material formed by the reaction moves from the control assembly to the neighboring fuel assemblies. The lower density of the eutectic melt than molten SS drives the upward motion of the eutectic in the molten core pool. This analysis indicated that the SIMMER-IV code using the eutectic reaction model has successfully simulated the eutectic reaction and the relocation of the eutectic melt as well as the reactivity transient behavior caused by the molten core material relocation.

Journal Articles

A Quantitative method of eutectic reaction study between boron carbide and stainless steel

Hong, Z.*; Pellegrini, M.*; Erkan, N.*; Liao, H.*; Yang, H.*; Yamano, Hidemasa; Okamoto, Koji*

Annals of Nuclear Energy, 180, p.109462_1 - 109462_9, 2023/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A series of experiments were conducted using B$$_{4}$$C material and SUS304 tubes as a simulant of the real control rods. Reaction rate constant data in the 1450K-1500K range were obtained, and are consistent with the reference values. The reaction layer microstructure observation and the associated chemical composition analysis were also carried onto the experiment samples.

Journal Articles

An Analytical method for quantifying the yields of DNA double-strand breaks coupled with strand breaks by $$gamma$$-H2AX focus formation assay based on track-structure simulation

Yachi, Yoshie*; Matsuya, Yusuke*; Yoshii, Yuji*; Fukunaga, Hisanori*; Date, Hiroyuki*; Kai, Takeshi

International Journal of Molecular Sciences (Internet), 24(2), p.1386_1 - 1386_14, 2023/01

 Times Cited Count:2 Percentile:75.46(Biochemistry & Molecular Biology)

When living cells are irradiated with radiation and complex damage is formed within a few nanometers of DNA, it is believed to induce biological effects such as cell death. In general, complex DNA damage formed in cells can be detected experimentally by fluorescence microscopy, because the area around the damage site emits light like a focus point when a fluorophore is used. However, this detection method has not been able to analyze the degree of complexity of DNA damage. Therefore, in this study, we addressed on the measured focus size and evaluated the degree of complexity of DNA damage using a track structure analysis code. As a result, we found that as DNA damage becomes more complex, the focus size also increases. Our findings are expected to provide a new analytical method for elucidating the initial factors of radiation biological effects.

JAEA Reports

Optimization of mercury flow with microbubbles in the target-vessel design by means of machine learning

Kogawa, Hiroyuki; Futakawa, Masatoshi; Haga, Katsuhiro; Tsuzuki, Takayuki*; Murai, Tetsuro*

JAEA-Technology 2022-023, 128 Pages, 2022/11

JAEA-Technology-2022-023.pdf:9.0MB

In a mercury target of the J-PARC (Japan Proton Accelerator Research Complex), pulsed proton beams repeatedly bombard the flowing mercury which is confined in a stainless-steel vessel (target vessel). Cavitation damage caused by the propagation of the pressure waves is a factor of the life of the target vessel. As a measure to reduce damages, we developed a bubbler to inject the gas microbubbles into the flowing mercury, which can reduce the pressure waves. To operate the mercury target vessel stably with the 1 MW high-intensity proton beams, further reduction of the damage is required. The bubbler setting position should be closer to the beam window to increase the bubble population, which could enhance the reduction effect on the pressure waves and damage. However, the space at the beam window of the target vessel is restricted. The bubbler design and setting position as well as the vane design for the mercury flowing pattern are optimized by means of a machine learning technique to get more suitable bubble distribution, increasing in bubble population and optimizing bubble size nearby the beam window of the target vessel. The results of CFD analyses performed with 1000 cases were used for machine learning. Since the flow rate of mercury affects the temperature of the target vessel, this was used for the constraint condition. As a result, we found a design of mercury target vessel that can increase the bubble population by ca. 20% higher than the current design.

Journal Articles

Normal spectral emissivity, specific heat capacity, and thermal conductivity of type 316 austenitic stainless steel containing up to 10 mass% B$$_{4}$$C in a liquid state

Fukuyama, Hiroyuki*; Higashi, Hideo*; Yamano, Hidemasa

Journal of Nuclear Materials, 568, p.153865_1 - 153865_12, 2022/09

 Times Cited Count:5 Percentile:78.52(Materials Science, Multidisciplinary)

The normal spectral emissivity, specific heat capacity and thermal conductivity of type 316 austenitic stainless steel (SS) containing boron carbide (B$$_{4}$$C) in a liquid state were experimentally measured over the composition range of SS-$$x$$ mass% B$$_{4}$$C (up to 10%) and wide temperature ranges using an electromagnetic levitator in a static magnetic field. The normal spectral emissivity and specific heat capacity were almost constant against temperature for all SS-B$$_{4}$$C melts, and the thermal conductivities of the melts had a negligible or small positive temperature dependence. The B$$_{4}$$C-content dependence of each property at 1800 K had a different tendency across the eutectic composition (around 3 mass% B$$_{4}$$C) of the SS-B$$_{4}$$C pseudo-binary system.

Journal Articles

Preliminary analysis of core disruptive accident in sodium-cooled fast reactor using eutectic reaction model of boron-carbide control-rod material

Yamano, Hidemasa; Morita, Koji*

Nihon Kikai Gakkai 2022-Nendo Nenji Taikai Koen Rombunshu (Internet), 5 Pages, 2022/09

It is necessary to simulate a eutectic melting reaction and relocation behavior of boron carbide (B4C) as a control rod material and stainless steel (SS) during a core disruptive accident (CDA) in an advanced large-scale sodium-cooled fast reactor (SFR) designed in Japan. A physical model simulating the eutectic reaction and relocation of the eutectic melt was developed to incorporate into the fast reactor severe accident analysis code SIMMER-IV for the CDA numerical analysis of SFRs. This study applied the SIMMER-IV code with the newly developed model to the CDA analysis of the SFR. This analysis indicated that the SIMMER-IV code using the eutectic reaction model has successfully simulated the eutectic reaction and the upward motion of the eutectic melt in the molten core pool as well as the reactivity transient behavior caused by the molten core material relocation.

Journal Articles

Elucidation of the mechanism of biomolecular damage in liquid water that occurs on a nanoscale by ion beams

Tsuchida, Hidetsugu*; Majima, Takuya*; Kai, Takeshi

Oyo Butsuri, 91(9), p.553 - 557, 2022/09

In recent years, basic research has been conducted to understand the biological effects of radiation at the atomic level toward advancing particle beam cancer treatment. Here we show some recent results on the basic process of biomolecular damage caused by ion beams in liquid water. A biomolecular solution target was introduced to the vacuum by a liquid molecular beam or microdroplet method. Secondary ion mass spectrometry was applied to measure the fragments of biomolecules emitted from a target irradiated with an ion beam. For the simulation study using a PHITS code, physical nature of secondary electrons produced by ion beam in water was analyzed. The experimental and simulation research determined the energy range of secondary electrons involved in damaging biomolecules in liquid water caused by ion beams. The damage process by secondary electrons near the ion track is described.

Journal Articles

Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors, 1; Project overview and progress until 2020

Yamano, Hidemasa; Takai, Toshihide; Emura, Yuki; Fukuyama, Hiroyuki*; Higashi, Hideo*; Nishi, Tsuyoshi*; Ota, Hiromichi*; Morita, Koji*; Nakamura, Kinya*; Fukai, Hirofumi*; et al.

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 12 Pages, 2022/09

This paper describes the project overview and progress of experimental and analytical studies conducted until 2020. Specific results in this paper are the measurement of the eutectic reaction rates and the validation of physical model describing the eutectic reaction in the analysis code through the numerical analysis of the B$$_{4}$$C-SS eutectic reaction rate experiments in which a B$$_{4}$$C pellet was placed in a SS crucible.

Journal Articles

Impact of the Lorentz force on electron track structure and early DNA damage yields in magnetic resonance-guided radiotherapy

Yachi, Yoshie*; Kai, Takeshi; Matsuya, Yusuke; Hirata, Yuho; Yoshii, Yuji*; Date, Hiroyuki*

Scientific Reports (Internet), 12, p.16412_1 - 16412_8, 2022/09

 Times Cited Count:2 Percentile:47.19(Multidisciplinary Sciences)

Recently, magnetic resonance-guided radiotherapy (MRgRT) which can visualize tumors in real time has been developed and installed in several clinical facilities. It is known that Lorentz force modulate macroscopic dose distribution by a charged particle, however, the impact by the force on microscopic radiation-track structure and early DNA damage induction remain unclear. In this study, we simulated the electron-track structure in a static magnetic field using a PHITS, and estimated features of biological effects. We indicated that the macroscopic dose distributions are changed by the force, while early DNA damage such as double strand breaks is attributed to the secondary electrons below a few tens of eV which are independent of the force. We expect that our insight significantly contributes to the MRgRT.

Journal Articles

Material properties evaluation on radiation shielding lead glasses irradiated by pulsed laser

Wakui, Takashi; Yamasaki, Kazuhiko*; Futakawa, Masatoshi

Advanced Experimental Mechanics, 7, p.103 - 109, 2022/08

As part of the development of technique to cut and reduce the volume of highly radioactive components in the closed space, pulsed Nd:YAG laser was irradiated to radiation shielding glasses with the different lead content in the different irradiation condition; power and number of irradiation. The large black irradiated area with concave shape and cracks around it occurred with an increase of the lead content, power and number of irradiation. General mechanical properties in unirradiated and irradiated area were investigated to investigate the influence of mechanical properties on the irradiation damage. The thermal impact fracture toughness calculated based on the estimated mechanical properties decreased with increasing the lead content. The micro hardness in black irradiated area was 10% smaller than that in the unirradiated area. The change of the mechanical property due to the laser irradiation was confirmed.

Journal Articles

Damage evaluations for BWR lower head in severe accident based on multi-physics simulations

Katsuyama, Jinya; Yamaguchi, Yoshihito; Nemoto, Yoshiyuki; Furuta, Takuya; Kaji, Yoshiyuki

Proceedings of ASME 2022 Pressure Vessels and Piping Conference (PVP 2022) (Internet), 9 Pages, 2022/07

Journal Articles

Effect of pulsed laser irradiation on the micro-plastic behavior of radiation shielding lead glasses

Wakui, Takashi; Yamasaki, Kazuhiko*; Futakawa, Masatoshi

Jikken Rikigaku, 22(2), p.96 - 104, 2022/06

Pulsed laser irradiation and indentation tests on radiation shielding glasses and a lead-free glass were carried out. The size of irradiation damage of the glass with high lead content was larger than that with low content. The micro plastic behavior of glasses was quantitatively determined using the inverse analyses based on indentation results. Flow stress decreased with an increase of lead content and that in irradiated area was lower than that in unirradiated area. On the other hand, plastic flow resistance increased with an increase of the lead content and that in irradiated area was higher than that in unirradiated area. Fracture energy and critical size of plastic zone around tip of crack in unirradiated and irradiated areas were calculated based on experimental results including constants evaluated using the inverse analysis. These values decreased with an increase of the lead content and these values in irradiated area were lower than that in unirradiated area.

Journal Articles

Preliminary application of eutectic reaction model on boron carbide and stainless steel to severe accident simulation of sodium-cooled fast reactors

Yamano, Hidemasa; Morita, Koji*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

For a severe accident (SA) simulation of sodium-cooled fast reactors, a eutectic reaction model between boron carbide (B$$_{4}$$C) and stainless steel (SS) has been developed to be incorporated into the SA simulation codes: SIMMER-III/IV. To confirm the applicability of SIMMER-IV involving the eutectic reaction model to reactor simulations, this study has preliminarily applied this code with the newly developed physical model to a SA simulation of a large-scale SFR designed in Japan. The simulation results show that the eutectic reaction is caused by the contact between the liquid SS and the broken B$$_{4}$$C pellets which are released to the coolant channel after the failure of cladding which is melted by the mixture of liquid SS and fuel particles coming from the neighboring fuel assemblies. The liquid eutectic material formed by the reaction stayed in the control assembly and the neighboring fuel assemblies. This preliminary simulation shows that the spreading area of B$$_{4}$$C-SS eutectic formation is limited within this calculation time.

582 (Records 1-20 displayed on this page)